Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397055

ABSTRACT

Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Osteoporosis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Simvastatin/pharmacology , Simvastatin/therapeutic use , Cholesterol, LDL , Osteoporosis/drug therapy , Bone and Bones
2.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338415

ABSTRACT

Tissue engineering is an interdisciplinary field of science that has been developing very intensively over the last dozen or so years. New ways of treating damaged tissues and organs are constantly being sought. A variety of porous structures are currently being investigated to support cell adhesion, differentiation, and proliferation. The selection of an appropriate biomaterial on which a patient's new tissue will develop is one of the key issues when designing a modern tissue scaffold and the associated treatment process. Among the numerous groups of biomaterials used to produce three-dimensional structures, hydroxyapatite (HA) deserves special attention. The aim of this paper was to discuss changes in the double electrical layer in hydroxyapatite with an incorporated boron and strontium/electrolyte solution interface. The adsorbents were prepared via dry and wet precipitation and low-temperature nitrogen adsorption and desorption methods. The specific surface area was characterized, and the surface charge density and zeta potential were discussed.


Subject(s)
Boron , Hydroxyapatites , Humans , Hydroxyapatites/chemistry , Tissue Scaffolds/chemistry , Durapatite , Biocompatible Materials/chemistry , Strontium/chemistry , Surface Properties
3.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38069072

ABSTRACT

This study presents a comprehensive evaluation of novel composite biomaterials designed for dental applications, aiming to potentially address the prevalent challenge of dental and periodontal tissue loss. The composites consisted of biomimetic hydroxyapatite (mHA) enriched with Mg2+, CO32-, and Zn2+ ions, type I collagen, alginate, and, additionally, chitosan and sericin. The granules were loaded with ibuprofen sodium salt. The investigation encompassed a morphology characterization, a porosity analysis, a chemical structure assessment, and an examination of the swelling behavior, drug release kinetics (ibuprofen), and release profiles of zinc and magnesium ions. The granules exhibited irregular surfaces with an enhanced homogeneity in the chitosan-coated granules and well-developed mesoporous structures. The FT-IR spectra confirmed the presence of ibuprofen sodium, despite overlapping bands for the polymers. The granules demonstrated a high water-absorption capacity, with delayed swelling observed in the chitosan-coated granules. Ibuprofen displayed burst-release profiles, especially in the G1 and G3 samples. In the case of the chitosan-coated granules (G2 and G4), lower amounts of ibuprofen were released. In turn, there was a significant difference in the released amount of magnesium and zinc ions from the granules, which was most likely caused by their different location in the hydroxyapatite crystals. The cytotoxicity assays confirmed the non-cytotoxic behavior of the biomaterial. These findings suggest the potential applicability of these biomaterials in dental scenarios, emphasizing their multifunctional and biocompatible nature.


Subject(s)
Apatites , Chitosan , Polymers , Chitosan/chemistry , Ibuprofen/pharmacology , Magnesium , Biomimetics , Spectroscopy, Fourier Transform Infrared , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Durapatite/chemistry , Zinc/chemistry , Ions , Sodium
4.
Biol Trace Elem Res ; 201(12): 5640-5651, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37002364

ABSTRACT

Zinc is a micronutrient of key importance for human health. An increasing number of studies indicate that zinc plays a significant role in bone tissue's normal development and maintaining homeostasis. Zinc is not only a component of bone tissue but is also involved in the synthesis of the collagen matrix, mineralization, and bone turnover. It has been demonstrated that zinc can stimulate runt-related transcription factor 2 (Runx2) and promote the differentiation of osteoblasts. On the other hand, zinc has been found to inhibit osteoclast-like cell formation and to decrease bone resorption by stimulating osteoclasts' apoptosis. Moreover, zinc regulates the RANKL/RANK/OPG pathway, thereby facilitating bone remodeling. To date, not all mechanisms of Zn activity on bone tissue are well understood and documented. The review aimed to present the current state of research on the role of zinc in bone tissue, its beneficial properties, and its effects on bone regeneration. Since calcium phosphates as bone substitute materials are increasingly enriched in zinc ions, the paper included an overview of research on the potential role of such materials in bone filling and regeneration.


Subject(s)
Bone Resorption , Zinc , Humans , Zinc/pharmacology , Zinc/metabolism , Bone and Bones/metabolism , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone Resorption/metabolism , Cell Differentiation , RANK Ligand/metabolism , Osteoprotegerin/metabolism
5.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556694

ABSTRACT

The aim of this work was to obtain and characterize composite biomaterials containing two components, namely carbonated hydroxyapatite, which was substituted with Mg2+ and Zn2+ ions, and natural polymer-collagen protein. The following two different types of collagen were used: lyophilized powder of telocollagen from bovine Achilles tendon and atelocollagen solution from bovine dermis. The obtained 3D materials were used as potential matrices for the targeted delivery of tranexamic acid for potential use in wound healing after tooth extractions. Tranexamic acid (TXA) was introduced into composites by two different methods. The physicochemical analyses of the obtained composites included Fourier-transform infrared spectroscopy (FT-IR), inductively coupled plasma-optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), release kinetics tests, swelling test, and cytotoxicity assays. The studies showed that the proposed synthetic methods yielded biomaterials with favorable physicochemical properties, as well as the expected release profile of the drug and ions from the matrices.

6.
Int J Mol Sci ; 23(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35806116

ABSTRACT

The aim of the current work was to study the physicochemical properties and biological activity of different types of porous granules containing silver or gallium ions. Firstly, hydroxyapatites powders doped with Ga3+ or Ag+ were synthesized by the standard wet method. Then, the obtained powders were used to fabricate ceramic microgranules (AgM and GaM) and alginate/hydroxyapatite composite granules (AgT and GaT). The ceramic microgranules were also used to prepare a third type of granules (AgMT and GaMT) containing silver or gallium, respectively. All the granules turned out to be porous, except that the AgT and GaT granules were characterized by higher porosity and a better developed specific surface, whereas the microgranules had very fine, numerous micropores. The granules revealed a slow release of the substituted ions. All the granules except AgT were classified as non-cytotoxic according to the neutral red uptake (NRU) test and the MTT assay. The obtained powders and granules were subjected to various antibacterial test towards the following four different bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli. The Ag-containing materials revealed high antibacterial activity.


Subject(s)
Bone Substitutes , Gallium , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Durapatite/chemistry , Escherichia coli , Gallium/pharmacology , Ions , Powders , Silver/chemistry , Silver/pharmacology
7.
Biomater Adv ; 139: 213011, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882155

ABSTRACT

Development of bone scaffolds that are nontoxic to eukaryotic cells, while revealing bactericidal activity still remains a huge challenge for the scientific community. It should be noted that only bacteriostatic (the ability of the biomaterial to inhibit the growth of bacteria) and bactericidal (the ability to kill >99.9 % bacteria) activities have clinical importance. Unfortunately, many material scientists are confused with the microbiological definition of antibacterial action and consider biomaterials causing reduction in colony-forming units (CFUs) by 50-80 % as promising antibacterial implants. The aim of this study was to synthesize three variants of Zn-doped hydroxyapatite (HA) nanopowder, which were characterized by different content of Zn2+ and served as a powder phase for the production of novel macroporous chitosan/agarose/nanoHA biomaterials with high antibacterial activity. Within this study, it was proven that the scaffold with a low zinc content (doping level 0.03 mol for 1 mol of HA; 0.2 wt%) revealed the gradual and slow release of the Zn2+ ions, preventing against accumulation of high and toxic concentration of therapeutic agents and providing prolonged antibacterial activity. Moreover, developed biomaterial was nontoxic to human osteoblasts and showed anti-biofilm properties, bactericidal activity (> 99.9 % of bacteria killed) against Staphylococcus epidermidis and Escherichia coli, significant antibacterial activity against Staphylococcus aureus (98.5 % of bacteria killed), and also bacteriostatic activity against Pseudomonas aeruginosa. Thus, the developed Zn-doped HA-based bone scaffold has excellent antibacterial properties without toxicity against eukaryotic cells, being a promising biomaterial for biomedical applications to repair bone defects and prevent post-surgery infections.


Subject(s)
Anti-Bacterial Agents , Zinc , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Biofilms , Durapatite/pharmacology , Escherichia coli , Humans , Staphylococcus epidermidis , Zinc/pharmacology
8.
Materials (Basel) ; 14(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34501158

ABSTRACT

In this work, 3D porous granules based on Zn and Se-containing calcium phosphates (CaPs) were fabricated using a droplet-extrusion technique. The composite beads varied in composition and contained two different natural polymers: sodium alginate (SA) and gelatin (GEL). To analyse and compare their physicochemical properties, such as porosity and morphology, different techniques were applied, including scanning electron microscopy (SEM), sorption of N2 and mercury porosimetry. Prior to the fabrication of the granules, the properties of CaPs materials, (the bioceramic base of the beads), selenium (IV)-substituted hydroxyapatite (Se-HA) and zinc-substituted dicalcium phosphate dihydrate (Zn-DCPD), were also investigated. The results of cell viability assessment showed that Se-HA powder was non-toxic to human osteoblasts (hFOB 1.19) and simultaneously exhibited high toxicity to tumour cells (Saos-2). Once the cytotoxicity assay was completed, Se-HA and Zn-DCPD were used to prepare 3D materials. The prepared porous granules were used as matrices to deliver simvastatin to bones. Simvastatin was applied in either the lipophilic form or hydrophilic form. The release kinetics of simvastatin from granules of different composition was then assessed and compared.

9.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207344

ABSTRACT

Osteoporosis is a chronic disease characterized by low bone mass caused by increased bone turnover and impaired bone microarchitecture. In treatment, we use antiresorptive or anabolic drugs, which usually have a unidirectional effect, i.e., they inhibit the activity of osteoclasts or stimulate the effect of osteoblasts. Strontium ranelate is an anti-osteoporosis drug with a unique mechanism of action (used primarily in postmenopausal women). Unlike other medicines, it has a multidirectional effect on bone tissue, intensifying osteoblastogenesis while inhibiting osteoclastogenesis. It turns out that this effect is demonstrated by strontium ions, an element showing physical and chemical similarity to calcium, the basic element that builds the mineral fraction of bone. As a result, strontium acts through the calcium-sensing receptor (CaSR) receptor in bone tissue cells. In recent years, there has been a significant increase in interest in the introduction of strontium ions in place of calcium ions in ceramics used as bone replacement materials for the treatment of bone fractures and defects caused by osteoporosis. The aim of this study was to summarize current knowledge about the role of strontium in the treatment of osteoporosis, its effects (in various forms), and the ways in which it is administered.


Subject(s)
Bone Density Conservation Agents/pharmacology , Osteoporosis/drug therapy , Strontium/pharmacology , Animals , Bone Density Conservation Agents/therapeutic use , Calcium/metabolism , Humans , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/metabolism , Strontium/therapeutic use
10.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805785

ABSTRACT

Osteoporosis is a worldwide chronic disease characterized by increasing bone fragility and fracture likelihood. In the treatment of bone defects, materials based on calcium phosphates (CaPs) are used due to their high resemblance to bone mineral, their non-toxicity, and their affinity to ionic modifications and increasing osteogenic properties. Moreover, CaPs, especially hydroxyapatite (HA), can be successfully used as a vehicle for local drug delivery. Therefore, the aim of this work was to fabricate hydroxyapatite-based composite beads for potential use as local carriers for raloxifene. HA powder, modified with magnesium and silicon ions (Mg,Si-HA) (both of which play beneficial roles in bone formation), was used to prepare composite beads. As an organic matrix, sodium alginate with chondroitin sulphate and/or keratin was applied. Cross-linking of beads containing raloxifene hydrochloride (RAL) was carried out with Mg ions in order to additionally increase the concentration of this element on the material surface. The morphology and porosity of three different types of beads obtained in this work were characterized by scanning electron microscopy (SEM) and mercury intrusion porosimetry, respectively. The Mg and Si released from the Mg,Si-HA powder and from the beads were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In vitro RAL release profiles were investigated for 12 weeks and studied using UV/Vis spectroscopy. The beads were also subjected to in vitro biological tests on osteoblast and osteosarcoma cell lines. All the obtained beads revealed a spherical shape with a rough, porous surface. The beads based on chondroitin sulphate and keratin (CS/KER-RAL) with the lowest porosity resulted in the highest resistance to crushing. Results revealed that these beads possessed the most sustained drug release and no burst release effect. Based on the results, it was possible to select the optimal bead composition, consisting of a mixture of chondroitin sulphate and keratin.


Subject(s)
Alginates/chemistry , Bone Density Conservation Agents/pharmacology , Drug Delivery Systems/methods , Durapatite/chemistry , Magnesium Silicates/chemistry , Raloxifene Hydrochloride/pharmacology , Bone Density Conservation Agents/metabolism , Bone Regeneration/physiology , Bone and Bones/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chondroitin Sulfates/chemistry , Drug Liberation , Humans , Keratins/chemistry , Kinetics , Nanoparticles/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects , Porosity , Raloxifene Hydrochloride/metabolism
11.
Int J Mol Sci ; 21(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271907

ABSTRACT

Powders of α-TCP containing various amounts of silicon were synthesized by two different methods: Wet chemical precipitation and solid-state synthesis. The obtained powders were then physico-chemically studied using different methods: Scanning and transmission electron microscopy (TEM and SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffractometry (PXRD), infrared and Raman spectroscopies (FT-IR and R), and solid-state nuclear magnetic resonance (ssNMR). The study showed that the method of synthesis affects the morphology of the obtained particles, the homogeneity of crystalline phase and the efficiency of Si substitution. Solid-state synthesis leads to particles with a low tendency to agglomerate compared to the precipitation method. However, the powders obtained by the solid-state method are less homogeneous and contain a significant amount of other crystalline phase, silicocarnotite (up to 7.33%). Moreover, the microcrystals from this method are more disordered. This might be caused by more efficient substitution of silicate ions: The silicon content of the samples obtained by the solid-state method is almost equal to the nominal values.


Subject(s)
Calcium Phosphates/chemistry , Chemistry Techniques, Synthetic , Silicates/chemistry , Silicon/chemistry , Calcium Phosphates/chemical synthesis , Chemical Phenomena , Magnetic Resonance Spectroscopy , Powder Diffraction , Spectroscopy, Fourier Transform Infrared
12.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679901

ABSTRACT

Hydroxyapatite (HA) powders enriched with silver or gallium ions or both were synthesized by two different routes: standard precipitation and the solid-state method. The powders were characterized by using several methods: inductively coupled plasma optical emission spectrometry (ICP-OES), powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM), infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). The effects of enrichment of the HAs in Ag+ or Ga3+ or both on in vitro cytotoxicity and microbiological activity were discussed. PXRD experiments showed that the samples obtained by the wet method consisted of single-phase nanocrystalline HA, while the samples prepared via the solid-state method are microcrystalline with a small amount of calcium oxide. The introduction of higher amounts of silver ions was found to be more effective than enriching HA with small amounts of Ag+. Gallium and silver ions were found not to affect the lattice parameters. Ga3+ affected the crystallinity of the samples as well as the content of structural hydroxyl groups. Among samples synthesized by the wet method, only one (5Ag-HAw) was cytotoxic, whereas all Ga-containing samples obtained by the dry method showed cytotoxicity. In the preliminary antimicrobial test all the materials containing "foreign" ions showed high antibacterial activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Durapatite/chemistry , Gallium/chemistry , Silver/chemistry , Animals , Anti-Bacterial Agents/pharmacology , BALB 3T3 Cells , Cations/chemistry , Cations/pharmacology , Durapatite/pharmacology , Gallium/pharmacology , Mice , Pseudomonas fluorescens/drug effects , Silver/pharmacology
13.
Materials (Basel) ; 13(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283608

ABSTRACT

Type I collagen and nanocrystalline-substituted hydroxyapatite are the major components of a natural composite-bone tissue. Both of these materials also play a significant role in orthopedic surgery and implantology; however, their separate uses are limited; apatite is quite fragile, while collagen's mechanical strength is very poor. Therefore, in biomaterial engineering, a combination of collagen and hydroxyapatite is used, which provides good mechanical properties with high biocompatibility and osteoinduction. In addition, the porous structure of the composites enables their use not only as bone defect fillers, but also as a drug release system providing controlled release of drugs directly to the bone. This feature makes biomimetic collagen-apatite composites a subject of research in many scientific centers. The review focuses on summarizing studies on biological activity, tested in vitro and in vivo.

14.
Int J Mol Sci ; 20(15)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390753

ABSTRACT

Modification of implantable scaffolds with magnesium and zinc for improvement of bone regeneration is a growing trend in the engineering of biomaterials. The aim of this study was to synthesize nano-hydroxyapatite substituted with magnesium (Mg2+) (HA-Mg) and zinc (Zn2+) (HA-Zn) ions in order to fabricate chitosan-agarose-hydroxyapatite (HA) scaffolds (chit/aga/HA) with improved biocompatibility. Fabricated biomaterials containing Mg2+ or Zn2+ were tested using osteoblasts and mesenchymal stem cells to determine the effect of incorporated metal ions on cell adhesion, spreading, proliferation, and osteogenic differentiation. The study was conducted in direct contact with the scaffolds (cells were seeded onto the biomaterials) and using fluid extracts of the materials. It demonstrated that incorporation of Mg2+ ions into chit/aga/HA structure increased spreading of the osteoblasts, promoted cell proliferation on the scaffold surface, and enhanced osteocalcin production by mesenchymal stem cells. Although biomaterial containing Zn2+ did not improve cell proliferation, it did enhance type I collagen production by mesenchymal stem cells and extracellular matrix mineralization as compared to cells cultured in a polystyrene well. Nevertheless, scaffolds made of pure HA gave better results than material with Zn2+. Results of the experiments clearly showed that modification of the chit/aga/HA scaffold with Zn2+ did not have any positive impact on cell behavior, whereas, incorporation of Mg2+ ions into its structure may significantly improve biocompatibility of the resultant material, increasing its potential in biomedical applications.


Subject(s)
Chitosan/chemistry , Durapatite/chemistry , Magnesium/chemistry , Metal Nanoparticles/chemistry , Sepharose/chemistry , Tissue Scaffolds/chemistry , Zinc/chemistry , 3T3-L1 Cells , Animals , Bone Regeneration , Cell Adhesion/drug effects , Cell Differentiation , Cell Proliferation/drug effects , Ions/chemistry , Metal Nanoparticles/ultrastructure , Mice , Osteogenesis , Spectroscopy, Fourier Transform Infrared , Tissue Engineering , X-Ray Diffraction
15.
Materials (Basel) ; 12(16)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31408945

ABSTRACT

Silicated hydroxyapatite powders enriched with small amounts of manganese (Mn2+) cations were synthesized via two different methods: precipitation in aqueous solution and the solid-state method. The source of Mn2+ ions was manganese acetate, while silicon was incorporated using two different reagents: silicon acetate and sodium metasilicate. Powder X-ray diffraction (PXRD) analysis showed that the powders obtained via the precipitation method consisted of single-phase nanocrystalline hydroxyapatite. In contrast, samples obtained via the solid-state method were heterogenous and contaminated with other phases, (i.e., calcium oxide, calcium hydroxide, and silicocarnotite) arising during thermal treatment. The transmission electron microscope (TEM) images showed powders obtained via the precipitation method were nanosized and elongated, while solid-state synthesis produced spherical microcrystals. The phase identification was complemented by Fourier transform infrared spectroscopy (FTIR). An in-depth analysis via solid-state nuclear magnetic resonance (ssNMR) was carried out, using phosphorus 31P single-pulse Bloch decay (BD) (31P BD) and cross-polarization (CP) experiments from protons to silicon-29 nuclei (1H → 29Si CP). The elemental measurements carried out using wavelength-dispersive X-ray fluorescence (WD-XRF) showed that the efficiency of introducing manganese and silicon ions was between 45% and 95%, depending on the synthesis method and the reagents. Preliminary biological tests on the bacteria Allivibrio fisheri (Microtox®) and the protozoan Spirostomum ambiguum (Spirotox) showed no toxic effect in any of the samples. The obtained materials may find potential application in regenerative medicine, bone implantology, and orthopedics as bone substitutes or implant coatings.

16.
Materials (Basel) ; 12(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443429

ABSTRACT

Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials.

17.
Int J Mol Sci ; 19(12)2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30558119

ABSTRACT

In this study, a novel biomaterial, i.e., brushite containing 0.67 wt% of selenium (Se-Bru) was synthesized via a wet precipitation method. Pure, unsubstituted brushite (Bru) was synthesized via the same method and used as a reference material. Different techniques of instrumental analysis were applied to investigate and compare physicochemical properties of both materials. Fourier-Transform Infrared Spectroscopy confirmed the chemical identity of both materials. Scanning Electron Microscopy (SEM) was used to study the morphology and indicated that both samples (Bru and Se-Bru) consisted of plate-like microcrystals. Powder X-ray Diffraction (PXRD) showed that Bru, as well as Se-Bru were crystallographically homogenous. What is more, the data obtained from PXRD studies revealed that the substitution of selenite ions into the crystal structure of the material had clearly affected its lattice parameters. The incorporation of selenium was also confirmed by solid-state ¹H→31P CP MAS kinetics experiments. Additionally, studies on the release kinetics of the elements forming Se-Bru and preliminary cytotoxicity tests were conducted. This preliminary research will favor a better understanding of ionic substitution in calcium phosphates and may be a starting point for the development of selenium-doped brushite cements for potential use in bone tissue impairments treatment.


Subject(s)
Bone Substitutes/chemical synthesis , Calcium Phosphates/chemical synthesis , Selenium/chemistry , Animals , BALB 3T3 Cells , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Survival , Chemical Precipitation , Mice , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Tissue Engineering , X-Ray Diffraction
18.
Int J Mol Sci ; 18(12)2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29186932

ABSTRACT

Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and ß crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and "additives" such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Metals, Heavy/chemistry
19.
Int J Nanomedicine ; 12: 5633-5642, 2017.
Article in English | MEDLINE | ID: mdl-28848343

ABSTRACT

Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1-1.5 mm in 2 ways: during the granules' preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13C and 31P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a "burst release" probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals' interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the "burst release" of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well.


Subject(s)
Antineoplastic Agents/administration & dosage , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Risedronic Acid/chemistry , Selenium/administration & dosage , Selenium/chemistry , Alginates/chemistry , Anions , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Durapatite/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Porosity , Powders/chemistry , Risedronic Acid/administration & dosage , Risedronic Acid/pharmacokinetics , Selenium/pharmacokinetics , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
20.
Molecules ; 22(7)2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28672871

ABSTRACT

The need for development of comprehensive therapeutic systems, (e.g., polymer-apatite composites) as a bone substitute material has previously been highlighted in many scientific reports. The aim of this study was to develop a new multifunctional composite based on hydroxyapatite porous granules doped with selenite ions (SeO32-) and a biodegradable branched copolymer-bisphosphonate conjugate as a promising bone substitute material for patients with bone tumours or bone metastasis. A series of biodegradable and branched copolymer matrices, adequate for delivery of bisphosphonate in the bone-deficient area were synthesized and physico-chemically and biologically (cyto- and genotoxicity assays) characterized. Branched copolymers were obtained using a hyperbranched bis-MPA polyester-16-hydroxyl initiator and Sn(Oct)2, a (co)catalyst of the ring-opening polymerization (ROP) of l,l-lactide (LLA) and ε-caprolactone (CL). A new amide bond was formed between the hydroxyl end groups of the synthesized copolymer carriers and an amine group of pamidronate (PAM)-the drug inhibiting bone resorption and osteoclast activity in bone. The dependence of the physico-chemical properties of the copolymer matrices on the kinetic release of PAM from the synthesized branched copolymer conjugate-coated hydroxyapatite granules doped with selenite ions was observed. Moreover, the correlation of these results with the hydrolytic degradation data of the synthesized matrices was evidenced. Therefore, the developed composite porous hydroxyapatite doped with SeO32- ions/biodegradable copolymer-PAM conjugate appears most attractive as a bone substitute material for cancer patients.


Subject(s)
Biocompatible Materials/chemical synthesis , Bone Substitutes/chemical synthesis , Diphosphonates/chemistry , Polyesters/chemical synthesis , Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Delayed-Action Preparations , Durapatite/chemistry , Kinetics , Molecular Structure , Pamidronate , Polyesters/chemistry , Selenious Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...